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ABSTRACT

Accurate agricultural forecasting is crucial, particularly in regions where temperature-
sensitive crops, such as olives, require careful management. This thesis work intro-
duces a hybrid forecasting model that integrates Facebook Prophet, a statistical time-
series forecasting tool, with a Gated Recurrent Unit (GRU) network to predict maxi-
mum daily temperatures in olive-producing regions. A key contribution of this work
is the integration of Growing Degree Days (GDD), both as a predictive feature for re-
fining temperature forecasts and as a real-time metric within a web-based application.
This application tracks accumulated heat units in real-time, allowing farmers to accu-
rately monitor olive tree growth stages and optimize cultivation decisions. By incorpo-
rating GDD calculations specific to olive cultivation, the model provides meaningful

insights to support agricultural planning.

The model was tested on diverse regional datasets from Tuscany (Italy), Almeria
(Spain), Kalamata (Greece), Bursa (Tukey), and Larnaca (Cyprus), demonstrating its
adaptability across Mediterranean and temperate olive-growing regions. The model
demonstrated superior accuracy in most test cases compared to established forecasting
methods, including Seasonal AutoRegressive Integrated Moving Average (SARIMA),
Simple Moving Average (SMA), standalone Long Short-Term Memory (LSTM) net-
works, and standalone GRU networks. On the Larnaca dataset, it achieved a Mean
Squared Error (MSE) of 0.004613, a Mean Absolute Error (MAE) of 0.051322, an
R? value of 0.838467, and a Mean Absolute Percentage Error (MAPE) of 11.52%,

surpassing all baseline methods in accuracy.

For practicality, a web application was developed to use the hybrid model’s forecasts
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to determine the current and historical GDD values and growth stages of plants. By
integrating advanced forecasting with a user-friendly web tool, this system serves as
an effective decision-support platform for climate-smart agriculture. Future work will
incorporate additional environmental factors, such as precipitation, soil moisture, and
humidity, to further enhance forecasting accuracy. These developments would further
strengthen the model’s utility in precision farming and adaptation strategies for climate

variability.

Keywords: Temperature Forecasting, Hybrid Model, Gated Recurrent Units, Growing

Degree Days, Mediterranean Climate, Agricultural Decision Support.
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Dogru tarimsal tahminler, 6zellikle sicaklifa duyarli mahsullerin, 6rnedin zeytinlerin
dikkatli yonetimi gereken bolgelerde biiylik onem tasimaktadir. Bu tez calismast,
zeytin iiretim alanlarinda giinlitk maksimum sicakliklari tahmin etmek icin istatistik-
sel tabanli Facebook Prophet algoritmasini ve sirali 6grenme yetenegine sahip Gegitli
Tekrarlayan Birim (GRU) agim birlestiren hibrit bir tahmin modeli sunmaktadir. Bu
calismanin 6nemli bir katkisi, Biiyiime Derecesi Giinleri (GDD) konseptinin hem si-
caklik tahminlerini iyilestiren bir tahmine dayal1 6zellik olarak hem de ger¢ek zamanl
bir metrik olarak bir web tabanli uygulama icinde kullanilmasidir. Bu sistem, birik-
mis 1s1 birimlerinin gercek zamanl takibini saglayarak ciftcilerin zeytin agaci biiyiime
asamalarin1 dogru bir sekilde degerlendirmesine ve ekim kararlarini optimize etme-
sine yardimci olur. Zeytin yetistiriciligine 6zel GDD hesaplamalar1 sayesinde model,

tarimsal planlama i¢in anlamli icgdriiler sunacak sekilde tasarlanmistir.

Model, farkli Akdeniz iklim kosullarina sahip Toskana (Italya), Almeria (Ispanya),
Kalamata (Yunanistan) ve Larnaka (Kibris) bolgelerinden alinan cesitli veri kiimeleri
tizerinde degerlendirilmistir. Model, cogu test senaryosunda, Mevsimsel Otoregresif
Entegre Hareketli Ortalama (SARIMA), Basit Hareketli Ortalama (SMA), bagimsiz
Uzun Kisa Siireli Bellek (LSTM) aglar1 ve bagimsiz GRU aglar1 gibi geleneksel tahmin
yontemlerine kiyasla iistiin dogruluk gostermistir. Larnaka veri seti iizerinde yapilan
degerlendirmede, model 0,004613 Ortalama Karesel Hata (MSE), 0,051322 Ortalama
Mutlak Hata (MAE), 0,838467 R? degeri ve %11.52 Ortalama Mutlak Yiizde Hata

(MAPE) elde etmis ve tiim temel modellerden daha yiiksek dogruluk saglamustir.

Pratik kullanim i¢in, hibrit modelin tahminlerini kullanarak mevcut ve gegcmis GDD
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degerlerini ve bitki biiylime agamalarini belirleyen bir web uygulamasi gelistirilmistir.
Geligmis tahmin yontemleriyle kullanici dostu bir web arayiiziinii entegre eden bu sis-
tem, iklime duyarli tarim uygulamalar i¢in etkili bir karar destek platformu olarak
hizmet vermektedir. Gelecekteki ¢alismalarda, tahmin dogrulugunu daha da artirmak
icin yagis, toprak nemi ve nem gibi ek cevresel faktorlerin modele dahil edilmesi
planlanmaktadir. Bu gelismeler, modelin hassas tarim ve iklim degiskenligine uyum

saglama alanlarindaki kullanimini daha da gii¢clendirecektir.

Anahtar Kelimeler: Sicaklik Tahmini, Hibrit Model, Gegitli Tekrarlayan Birimler,

Biiytime Derecesi Giinleri, Akdeniz Iklimi, Tarimsal Karar Destek.
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Chapter 1

INTRODUCTION

Olive cultivation, which has provided a source of income for numerous families in the
Mediterranean region for many years, is both an art and a science. Like many other
crops, olive production also depends on factors such as soil type, water, pests, and,
most importantly, climate. Temperature is particularly crucial in the growth, produc-
tion, and quality of olives. Unpredictable weather patterns and climate variability have
been problematic for farmers in recent years, as they make it harder to determine the
right time to carry out certain critical agricultural activities.

1.1 Problem Statement

The traditional statistical forecasting techniques that have been in use for several
decades now fail to provide the level of precision required for daily decision-making
in the agricultural sector. However, advancements in machine learning algorithms
are addressing these challenges by enabling more precise and adaptable weather
forecasting. These innovations have the potential to improve farming practices
through the delivery of tailored forecasts, such as monitoring temperature changes and

examining seasonal tendencies on a micro-regional scale.

This research used valuable tuning techniques specifically designed for olive growers.
It enables farmers to make informed decisions based on actionable insights derived
from forecasting data. The study plays a significant role in promoting sustainable
and efficient olive farming, especially in the context of climate change, by helping to

interpret complex climate data and effectively apply it in agriculture.
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1.2 Thesis Aim and Objectives

This research has been prompted by the growing need to improve agriculture’s preci-
sion and resilience, especially in the context of increasing climate variability. Under
current and future climate change scenarios, olive cultivation, which is at the heart
of Mediterranean agriculture, is particularly vulnerable to weather variability. Tem-
perature, rainfall, and seasonal changes, along with their uncertainties, impact crop
quality and production, presenting new challenges to olive farmers who must maintain

productivity and profitability.

Accurate, localised temperature forecasts are not merely nice to have; they are essential
tools for farmers to make informed decisions. Whether it involves deciding when
to turn on the irrigation, when to apply pesticides and disease control measures, or
when to harvest, having precise weather information can mean the difference between
a successful and disappointing season for the olive farmer, affecting both the quality

of the yield and the efficiency of operations.

This thesis aims to bridge the gaps in traditional forecasting through the development
of a statistical and deep learning hybrid model. Long-term trends and seasonal patterns
are identified and modelled using Facebook Prophet and GRU networks, which are
utilised to fine-tune these forecasts to incorporate non-linear relationships and short-

term variations.

To make the model reliable and adaptable, data is collected from major olive producing
areas of the Mediterranean region, namely Cyprus, Spain, Italy, Greece and Turkey.
The model is designed to perform well in a variety of environmental settings and it is

a useful tool for farmers seeking to prepare for the implications of climate change and



to improve their agricultural production.
1.3 Thesis Layout
This thesis is divided into five chapters which are all relevant to the hybrid weather

forecasting model and its application in olive production.

The first chapter of this paper is the Introduction, which sets the stage for the study.
It outlines the problems of weather forecasting in agriculture especially for the olive
growing areas and the shortcomings of the conventional statistical models. The objec-

tives, scope, and significance of the study are also stated.

The second chapter, Literature Review, examines existing weather forecasting tech-
niques, covering statistical methods, machine learning models, and hybrid approaches.
It discusses the advantages of combining statistical decomposition (Facebook Prophet)
with deep learning (Gated Recurrent Units) for time-series forecasting. Additionally,
the concept of Growing Degree Days (GDD) and its relevance to plant growth tracking

are explored.

In the third chapter, Methodology, the end to end process of developing the hybrid fore-
casting model is explained in detail. The Software Development Life Cycle (SDLC),
feasibility considerations and data preprocessing techniques are outlined. The model
architecture is explained, including the decomposition of temperature trends, sequence
modeling with GRUs, and real-time updates using the Bayesian Ensemble Kalman
Filter (BEKF). This chapter also describes the database structure and system design,

supported by UML diagrams and an Entity-Relationship (E-R) model.

The fourth chapter, Implementation, Results, and Discussion, presents the technical



implementation of the forecasting model and web application. It describes the devel-
opment tools used, RESTful API design, and frontend visualization using React and
Plotly.js. The performance of the hybrid model is evaluated using metrics namely
Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) and R2 score. A comparative analysis with baseline models is provided,
along with insights on the accuracy and efficiency of the proposed system. The web
application’s quality control measures, user experience considerations, and real-world

usability are also discussed.

The fifth chapter, Conclusion and Future Work summarizes the research findings and
their implications for agricultural weather forecasting. The importance of the research
findings and their application in agricultural weather forecasting are presented. Some
improvements are suggested, including: enhancing the model generalization, using the
model for other crops, and increasing the number of climate variables. The study’s

relevance to precision agriculture and climate resilience is also emphasized.

The thesis concludes with a References section, listing all cited works, ensuring proper

attribution of prior research.



Chapter 2

LITERATURE REVIEW

Weather forecasting has historically relied on statistical models that use past data to
predict future conditions. But because of increasing complexity in climate patterns and
the need to provide more accurate forecasts, machine learning (ML) and deep learning
(DL) algorithms have gained prominence. These methods enable the models to learn
non-linear relationships, temporal dependencies, and high-dimensional feature inter-
actions from meteorological datasets. Hybrid models have also recently emerged[2],
integrating the interpretability of traditional statistical techniques with the flexibility
and predictive power of machine learning (ML) and deep learning (DL) methods. In
this chapter, an examination of the literature on forecasting will be presented, ranging
from the classical statistical approaches to the current Al based models. The significant
developments and their application to weather forecasting will be discussed.

2.1 Statistical Methods for Weather Forecasting

Statistical methods have long been foundational in weather forecasting. Techniques
such as linear regression, autoregressive integrated moving average (ARIMA), and
seasonal ARIMA (SARIMA) are widely used due to their simplicity and ability to
model historical data for future prediction. These methods focus on identifying trends,
seasonality, and correlations. However, these methods are restricted to stationary and
linear data. For example, ARIMA is effective for univariate time series forecasting but

struggles with nonlinearity in weather data [3].

To enhance the handling of multivariate data with mixed types of variables, advanced
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statistical techniques, such as Generalized Additive Models (GAMs) and Principal
Component Analysis (PCA), are employed to transform and reduce the dimension of
the data. Nevertheless, these methods are still not very efficient in predicting sudden
and nonlinear changes in weather. This limitation has led to a growing interest in
hybrid models that combine statistical and machine learning approaches. [4].

2.2 Machine Learning Methods for Weather Forecasting

Machine learning (ML) and deep learning (DL) methods have revolutionized weather
forecasting by allowing the models to pick up the the non-linear and complex patterns
in large intricate datasets. Traditional statistical models, while effective in capturing
linear trends and seasonality, often struggle with the nonlinear nature of weather data.
ML algorithms, such as Support Vector Machines (SVM), Random Forests (RF), and
Gradient Boosting Machines (GBMs), have been extensively used for tasks such as
rainfall prediction and temperature forecasting. In addition to handling non-linear data
well, these methods also do well in feature selection, choosing the most consistent,
non-redundant, and relevant features to use in model construction. The results clearly

show significant improvement in comparison to traditional approaches.[5].

Deep learning models have further enhanced weather forecasting by addressing the
temporal dependencies inherent in sequential data. Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRUs) are particularly effective in modeling
time-series data, as they mitigate the vanishing gradient problem and capture long-
term dependencies. For instance, Shi et al. proposed ConvLSTM for precipitation
forecasting, which demonstrated the ability to model spatial-temporal dependencies

effectively [6].

CNNs have also been used for spatial weather data, such as satellite imagery. A com-



bination of a CNN and a recurrent network has improved the predictive accuracy by

using both spatial and temporal features [7].

Some of the newest developments include:

* Transformer Based Models: Transformer architectures have been successfully
employed for medium range weather forecasting by means of self attention [8].
* Physics—AI Hybrid Models: Physical simulations combined with Al techniques
provide a compact representation that combines the data-driven methods and
scientific principles, as demonstrated by [9].
* Generalizable AI Models: These are models developed for modeling of the
earth’s system. They emphasize the importance of robust architectures which
are capable of adapting across different geographies and datasets [10].
2.3 Hybrid Models for Weather Forecasting
To analyze both the linear and non-linear weather components, hybrid models attempt
to combine the strengths of statistical and machine learning methods. Statistical tools
like ARIMA or Facebook Prophet help to capture the long-term trend and seasonality

while machine learning techniques improve on the residuals for a better fit [11].

For example, Yu et al. [12] proposed a hybrid ARIMA-LSTM model that could well
characterize both the linear and nonlinear dynamics of the system and found that it
outperformed the corresponding standalone approaches. Facebook Prophet has also
been really popular for breaking down time series data into its components for deeper

analysis with techniques like GRUs [13].

New hybrid approaches including physics informed machine learning embeds prior

physical knowledge and constraints to enhance the interpretability and extendability of



the models. Hybrid models that combine numerical weather predictions (NWP) with
data driven methods have been found to be very efficient in predicting variables such
as rainfall and stream flow [2].

2.4 Facebook Prophet

Facebook Prophet is an open-source library specifically designed for time-series fore-
casting with strong seasonal trends. It decomposes data into trend, seasonal, and resid-
ual components, allowing for interpretable predictions. Prophet is highly flexible, han-

dling missing data, outliers, and custom seasonalities with ease [11].

Prophet is also able to integrate external regressors, such as humidity or precipitation,
to improve accuracy. It includes many customizable options for users to tweak and
adjust forecasts. Recent studies, such as the work by Ahmed et al., have successfully
combined Prophet with GRU networks, achieving significant improvements in predic-
tive performance [13]. Hybrid approaches like VAR-GRU further underscore Prophet’s

versatility in agricultural applications [14].



Chapter 3

METHODOLOGY

This chapter thoroughly details the comprehensive pipeline and methodology involved
in developing a hybrid temperature forecasting model for olive-producing regions.
3.1 Overview

Data collection, preprocessing, feature engineering, decomposition, hybrid model im-
plementation, and performance evaluation is discussed here. background informa-
tion on Gated Recurrent Units (GRUSs), the rationale for using Growing Degree Days
(GDD) in agricultural forecasting, and an overview of the V-model software Develop-
ment Life Cycle (SDLC) employed in the study. Flowcharts and diagrams are included
for visual representation.

3.2 Software Development Life Cycle (SDLC)

The development of this forecasting system was done using the V-Model Software
Development Life Cycle (SDLC) which is characterized by verification and validation
at each phase of the development process. This approach was selected for its structure,
making it appropriate for any type of study that requires rigorous testing and precision,
including time series forecasting tasks. The steps in the approach are shown in Figure

3.1.

The following stages were followed:

* Requirements Analysis: At this stage, the requirements of olive farmers and
agricultural researchers were gathered. The scope of the system, which includes

temperature forecasting, growing degree days (GDD) computation, and a user-
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V-Model Software Development Life Cycle

Requirements Analysis Acceptance Testing

—

System Design System Testing

| Architecture Design Integration Tasting |

Module Design Unit Testing

A lon CodingfDebugging |

Development Flow 4 Verification Flow T

Figure 3.1: V-Model Software Development Life Cycle (SDLC)

friendly web interface was also determined.

System Design: The system architecture was designed, outlining how real-time
weather data would be fetched, processed, and stored. At this stage, the API
endpoints and database schema were also defined.

Architecture Design: The high-level design of the software system was formu-
lated, including API routes, database interactions, and frontend-backend com-
munication.

Module Design: The implementation was broken down into independent mod-
ules: data retrieval, GDD computation, database management, and user inter-
face.

Implementation: The Flask backend was developed for data processing and
API handling, while the React frontend was built for visualizing GDD trends
and allowing user interaction.

Coding and Debugging (Unit Testing) Each module was tested independently
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to verify its correctness. The API endpoints were tested for valid data retrieval
and calculation.
* Integration Testing The frontend and backend were integrated to test seamless
data exchange and visualization.
» System Testing The entire system was tested under simulated real-world condi-
tions, validating data accuracy and user interaction flows.
» Acceptance Testing The final system was evaluated based on the ability to pro-
vide accurate GDD computations and an intuitive user experience.
3.3 Feasibility Study
A feasibility study was performed in order to assess the viability of implementing
this system for olive farmers and agricultural researchers. This study evaluates three
primary aspects: technical feasibility, operational feasibility, and economic feasibility.
3.3.1 Technical Feasibility
The system was designed to leverage existing technologies such as Python, Flask,
SQLite, React.js, and OpenWeatherMap API. The choice of these technologies en-

sures that:

* The model can handle real-time weather data updates dynamically.

* The web application remains lightweight and accessible across multiple devices.

The SQLite database provides an efficient way to store and retrieve GDD records

for long-term tracking.

The hybrid model, combining Facebook Prophet and GRU networks, efficiently

captures both seasonality and short-term variations in temperature trends.

Additionally, cloud deployment options (e.g., Heroku, AWS Lambda) were considered

for future scalability.
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3.3.2 Operational Feasibility

In addition, operational feasibility was ensured by making sure that the system is com-
patible with the requirements of its target users. For the farmers, the system gives real
time and historical GDD tracking that helps in making decisions on the crop manage-
ment and harvesting time.

3.4 Data Collection and Preprocessing

Accurate and reliable data are crucial for developing good forecasting models. The
hybrid model is trained using historical meteorological datasets to ensure that temper-
ature trends and seasonal variations are learned properly. The data collection process
was also carefully done in order to gather high quality, long term temperature data from
different olive-producing regions in the Mediterranean. In addition, some preprocess-
ing techniques were used to clean, normalize and handle missing data to ensure that
data consistency for when it is fed to the forecasting model.

3.4.1 Sources

Temperature data were collected from publicly available meteorological datasets,
namely the National Centers for Environmental Information (NCEI) [15], spanning
multiple decades. Data from key olive-producing regions were extracted, summarized
in Table 3.1.

3.4.2 Data Definitions and Types

The dataset consists of daily meteorological records spanning multiple decades, with
temperature readings serving as the primary variables for analysis. The key attributes

used in this study include:

* Daily Maximum Temperature (T,,,,) — The highest recorded temperature for the
day, crucial for estimating heat accumulation.

* Daily Minimum Temperature (T,,;,) — The lowest recorded temperature for the
day, providing information on the variability of the temperature.
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Table 3.1: Summary of temperature datasets for olive-producing regions

Region

Climate Characteristics

Data Coverage Period

Almeria, Spain

Semi-arid climate with
high temperature variabil-

ity

Jan 1968 — Jan 2025

Grosseto, Italy

Classic Mediterranean
climate with balanced
seasonal patterns

Dec 1944 — Jan 2025

Bursa, Turkey

Influenced by  both
Mediterranean and conti-
nental climates

Jan 1973 — Jan 2025

Kalamata, Greece

Stable seasonal trends
characteristic  of  the
Mediterranean region

Jul 1987 — Jan 2025

Larnaca, Cyprus

Stable seasonal trends
characteristic  of  the
Mediterranean region

Apr 1976 — Jan 2025

* Daily Average Temperature (T,,g) - Calculated as the mean of Tpax and Tyyin,

and is used as a reference for Growing Degree Days (GDD) calculations.

* Date Information - The dates were standardized in ISO 8601 format (YYYY-

MM-DD).

The original datasets consisted of other meteorological variables such as precipitation,
snow depth, and wind direction, but they were rather incomplete, or had limited data
for the selected regions. Hence, only temperature related variables were employed
for modeling to guarantee data reliability and completeness. This is in conformity

with the study’s interest on temperature-induced agricultural forecasting especially for

GDD which is primarily a function of thermal accumulation.

3.4.3 Ethical Concerns
Since this research is based on publicly available meteorological data sets, there are
no issues of privacy with data collection. However, ethical considerations were made

in terms of transparency and fairness of data selection and preprocessing. The study
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@app. route( ' /gdd', methods=['GET']}

def get_gdd{):
location = request.args.get{"location", “Larnaca")
base_temp = request.args.get(“base_temp", 18)
start_date = request.args.get("start_date")

print{f"Received reguest: location={location}, base_temp={base_temp}, start_date={start_date}")

# Validate base temperature
try:

base_temp = flozt(base_temp)
except ValueError:
return jsonify{{“error”: “Base temperature must be a valid number."}), 408
# Validate start date
if not start_date:
return jsonify({"error": "Please specify a planting start date in YYYY-MM-DD format."}), 4@
try:

start_date = datetime.strptime({start_date, "sY-%m-%d").date()
except Value i
return jsonify({"error": "Invalid date format. Use YYYY-MM-DD."}), 400

Figure 3.2: The /gdd API route, which extracts location, base temperature, and
planting date parameters, validates input values, and returns errors for incorrect
formats.

does not alter or prejudice the dataset in any way and all the preprocessing steps such
as dealing with missing data are well documented in order to ensure replicability.
3.4.4 Software Engineering Standards Applied

To ensure the reliability and maintainability of the system, industry-standard practices

were followed:

* RESTful API Design: The API endpoints were structured following REST prin-
ciples to ensure scalability and modularity. Figure 3.2 shows a screenshot of the
/gdd route, which processes the request by extracting query parameters such as
location, base temperature, and planting start date. It also has validation steps to
make sure that the base temperature is a valid numerical value and the start date
is actually provided in the right format (YYYY-MM-DD). If any validation fails,
then a proper error message is returned along with a 400 (Bad Request) status
code to make the API more resilient.

» Separation of Concerns: The frontend (React) and backend (Flask) were de-
veloped as independent components.

* Database Consistency: SQLite was chosen for its lightweight nature.
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3.4.5 General Overview of TMAX in Cyprus

The maximum daily temperature (TMAX) in Cyprus is a critical variable for under-
standing the climatic conditions that influence olive cultivation. Figure 3.3 illustrates
the yearly TMAX trends for Cyprus over the analyzed time period.

3.4.5.1 Seasonal Trends

The data demonstrates an obvious cyclic pattern, which is characteristic of the Mediter-
ranean climate and directly influences olive cultivation cycles. It is approximately di-

vided into:

e Summer Months: TMAX peaks during the summer months, often surpassing
35°C. This heat plays an important role in olive fruit development and oil syn-
thesis, as documented by Jones et al. (1999) [16].

* Winter Months: During winter, TMAX remains relatively mild in many
mediterranean areas, typically ranging between 10°C and 15°C, creating ideal
conditions for the dormancy phase of olive trees [4]. These mild winters, where
temperatures rarely drop below freezing, also contribute to why Mediterranean
climates are particularly well-suited for olive cultivation. However, some
localized variations can occur, and occasional frosts can pose a risk in some

regions.

The periodic nature of olive growth and maturation cycles is reflected in these patterns,
which mirror the strong seasonality in Cyprus’s climate. Temperature seasonal varia-
tions have been central to understanding of agricultural productivity as highlighted by
Box et al. (2015) [3].

3.4.5.2 Long-Term Observations

Assessing long-term TMAX trends offers insights into climate variability and its im-

pact on olive production. Some of these insights include:
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Figure 3.3: Yearly trends of TMAX in Cyprus. The cyclic pattern reflects seasonal
variations and long-term trends.

* Climate Variability: Changes in TMAX over decades are gradual, indicating a
shift in climate patterns that may affect how reliable olive yields are [17].
* Heatwaves: Occasional peaks in TMAX result in heat waves which can stress

the olive trees, and directly affect the oil quality [4, 14].

Shi et al. [6] emphasize the importance of incorporating such long-term trends into
forecasting models to account for extreme weather events.

3.4.5.3 Distribution of Target Variable (TMAX)

The distribution of the target variable (y) is shown in Figure 3.4, which depicts normal-
ized daily maximum temperatures (TMAX) for Larnaca, Cyprus. The normalization

scales TMAX values between 0 and 1 for model training.

Key characteristics of the distribution include:

* Bimodality: There are two distinct apexes that reflect the seasonal temperature
patterns, particularly the peak summer and winter temperatures in olive-growing
regions [4].

* Symmetry: This approximately symmetric distribution simplifies modeling and
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Figure 3.4: Distribution of the normalized target variable (y).

it reduces the need for transformations to achieve normality. [18].
* Minimal Skewness and Outliers: Few outliers and negligible skewness con-
tribute to a balanced data set, and pre-processing steps address any anomalies.
3.4.5.4 Significance of Target Variable Distribution

Understanding the target variable’s distribution is essential for:

* Model Learning: Bimodal distributions guide the model in learning patterns

associated with seasonal variations [19].

* Evaluation Metrics: Symmetry ensures error metrics, such as MAE and MSE,

fairly represent the entire dataset [20].

* Feature Engineering: The observed distribution supports the inclusion of sea-
sonal features in the hybrid model [7].

3.4.5.5 Implications for Olive Cultivation

Understanding yearly TMAX trends in Mediterranean regions like Cyprus is necessary

for:

* Crop Management: To preplan for irrigation requirements during the summer
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to avoid heat stress impacts [21].

Harvest Planning: Timing of harvest to obtain maximum yield and product
quality during optimum temperature conditions.

Modeling Precision: Incorporating these trends into the hybrid model enhances
its ability to capture seasonal and annual TMAX patterns, improving forecast

accuracy [11].

3.5 Requirements Analysis

In this section, the functional and non-functional requirements of the system are out-

lined. The requirements were gathered from the needs of the farmers, researchers and

stakeholders who require precise weather forecasting and growing degree day (GDD)

tracking to support their decision making processes.

3.5.1 Functional Requirements

The system was designed to fulfill the following core functionalities:

Weather Data Retrieval: The system uses a hybrid forecasting model that com-
bines pre-trained temperature prediction models with real-time data from the
OpenWeatherMap API (One Call 3.0 subscription). This ensures that forecasts
are dynamically adjusted according to the most recent observed weather condi-
tions for more accurate agricultural decision making.

GDD Calculation: Computes daily and cumulative growing degree days based
on user-specified base temperature and planting date.

Growth Stage Estimation: Determines the current growth stage of olive trees
based on accumulated GDD values.

Web Interface for User Input: Users can specify their location, planting date,
and base temperature through a user-friendly interface.

Dynamic GDD Visualization: Displays accumulated GDD over time in an in-

teractive chart to help farmers track progress.
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3.5.2

RESTful API for Data Access: Provides structured API endpoints for retriev-
ing temperature, GDD, and growth stage data.

Database Storage: Stores accumulated GDD values for each location and start
date in an SQLite database to ensure continuity.

Error Handling and Validation: Ensures inputs such as base temperature and
planting date are correctly formatted and reasonable.

Non-Functional Requirements

The system also adheres to the following software quality attributes to ensure usability

and reliability:

3.5.3

Performance: API responses are optimized to provide real-time feedback with
minimal latency.

Scalability: The REST API structure ensures easy expansion to accommodate
additional features or other crops.

Usability: A simple and intuitive web-based Ul is designed to be accessible to
non-technical users, such as farmers.

Reliability: The system is designed to function even when OpenWeatherMap
data retrieval encounters delays, using cached database values when available.
Maintainability: The modular architecture allows independent updates to the
API, database, and UI components.

Security: Input validation prevents incorrect or malicious data from being pro-
cessed.

Stakeholders and Use Cases

The primary actors of the system include olive farmers who need accurate GDD to

use it for irrigation, fertilization and determining the time of harvest. Olive farming

climate adaptation is an area of research that could benefit greatly from accurate fore-

casting models. Software engineers may consider the system to be useful for extending
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its application to other agricultural sectors through its modular design and predictive
models.

3.5.4 System Constraints

The system relies on the internet connectivity to fetch real-time weather data from an
API called OpenWeatherMap, therefore it requires stable access for dynamic updates.
The API limitations impact the historical weather data retrieval, which may limit the
historical data that can be retrieved for analysis. Although the forecasting model has
been optimized for efficiency, its computational requirements may need further refine-
ment for large-scale deployment, especially in the regions with extensive agricultural
monitoring needs.

3.5.5 Assumptions

It is expected that users have at least some internet connection to use the web interface
and get the latest forecasts. The system is also based on the assumption that Open-
WeatherMap API is working and can be used for further data updates in the future.
Furthermore, it is assumed that the predefined GDD thresholds for olive tree growth
stages are valid for Mediterranean climates and may require some modification for
other agricultural productions.

3.6 System Design and Modelling

The system is developed using a V-Model Software Development Life Cycle (SDLC)
approach as shown in Figure 3.1, where the validation is performed at each develop-
ment stage. The developed application provides real time access to weather forecasting
and Growing Degree Days (GDD) tracking to help olive farmers in deciding the growth
stages of their crop.

3.6.1 Conceptual Design of the Proposed Solution

The system is structured into three main components: the data acquisition layer, the

processing layer, and the presentation layer. These components work together to ensure
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accurate GDD calculations and dynamic updates based on real-time weather data. An

overview of how these layers interact is provided in Figure 3.5.

System Architecture Diagram

H GOD Monitoring System Current Growth
Stage & GDD
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for Growth Stage
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Figure 3.5: System architecture of the GDD monitoring and forecasting system. The
system integrates real-time weather data from OpenWeatherMap, processes it using a
hybrid forecasting model, and presents GDD trends and growth stages via a web
interface.

The data acquisition layer retrieves real-time and historical temperature data using
OpenWeatherMap’s One Call API 3.0. This data is passed to the processing layer,
where the hybrid forecasting model combines Bayesian Ensemble Kalman Filter
(BEKF)updates with pre-trained GRU-based predictions.The GDD Calculation
Engine computes daily and cumulative GDD values, which are stored in the Historical
GDD Database. The presentation layer is responsible for displaying this information
to the user through a web-based interface. Farmers can enter their planting date and
location to receive personalized growth stage updates and track cumulative GDD over
time.

3.6.1.1 Data acquisition layer

This layer uses the OpenWeatherMap’s One Call API 3.0 to fetch real-time and his-
torical temperature data and update them dynamically to improve the predictions. Fur-
thermore, it includes a trained hybrid forecasting model that combines statistical and

deep learning approaches to extend the forecasts for olive-growing areas.
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3.6.1.2 Processing layer

The processing layer calculates daily values of GDD from retrieved and predicted tem-
perature data and monitors growth accumulation over time. It adaptively updates plant
growth stages through the use of real time weather observations and the model predic-
tions to enhance the decision-making accuracy.

3.6.1.3 Presentation layer

The system’s presentation layer is implemented through a web based interface where
farmers can enter their planting date, see historical and forecasted GDD trends, and
learn about the plant growth stages.

3.6.2 UML diagrams

UML diagrams were designed to visualize and better understand the system’s archi-
tecture and functionality. These diagrams represent system components and their in-
teraction in a structured manner from a structural and behavioral perspective.

3.6.2.1 Behavioral UML Diagrams

In the use case diagram illustrated in Figure 3.6, the interactions between the users and
the system are depicted. The diagram highlights key functionalities such as entering
planting dates, fetching weather data, calculating GDD and viewing plant growth in-
sights. Farmers are able to use the web interface to enter the relevant information and
the system is able to communicate with the OpenWeatherMap API and the database to

process and present useful forecasts.

The Sequence Diagram in Figure 3.7 shows the sequence of messages exchanged be-
tween the frontend, backend and the external weather API. It shows how user requests
made, for instance for GDD, are sent to the backend, which in turn requests the tem-
perature data, calculates the GDD, updates the database and then presents the output
to the user. This diagram is useful in identifying the sequence of events and system
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Use Case Diagram: Temperature Forecasting System
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Figure 3.6: Use case diagram illustrating the main interactions between users (olive
farmers and researchers) and the temperature forecasting system. The diagram shows
core functionalities including data input, weather data retrieval, GDD calculations,
and growth insight visualization.

interactions in the logical flow of operations.

The Activity Diagram shown in Figure 3.8 gives a more comprehensive view of the
GDD computation workflow. It illustrates the process from start to finish, which
includes user input check, weather data collection, forecast using the hybrid model,
tracking of cumulative GDD and presentation of the report visualization.

3.6.2.2 Structural UML Diagrams

The Structural UML diagrams give a clear representation of the system’s architecture

and show the system’s main components, relationships, and dependencies.

From the component diagram in Figure 3.9, we get an overall view of the major soft-

ware modules and their interaction. It shows the frontend web application, which al-
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Sequence Diagram: Dynamic Temperature Forecasting Process
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Figure 3.7: Sequence diagram depicting the dynamic interaction flow between system
components for temperature forecasting. The diagram illustrates how the hybrid
model is continuously updated with real-time OpenWeather data to maintain
prediction accuracy.

Activity Diagram: GDD Computation Workflow
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Figure 3.8: Activity Diagram showing the complete workflow of the GDD
computation process. The diagram traces the path from initial user input validation
through weather data collection, hybrid model updates, and final visualization
generation.
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GDD Tracking System - Component Diagram
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Figure 3.9: Component diagram

lows users to input data and visualize results, the Flask backend API, which processes
requests and communicates with other components, the SQLite database, which stores
GDD values for tracking plant growth, and the OpenWeatherMap API, which provides
real-time and historical temperature data. This diagram helps convey how different

parts of the system work together in a modular and maintainable way.

The class diagram in Figure 3.10 focuses on the internal data structures and their rela-

tionships. The key classes include:

» WeatherDataFetcher - Retrieves temperature data from OpenWeatherMap.

* GDDCalculator - Computes daily and cumulative GDD values.

* DatabaseManager - Handles data storage and retrieval in SQLite.

» Userlnterface - Connects with the backend to present relevant information in a

way that is easy for users to understand.
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Olive Growing Degree Days (GDD) Tracking System - Detailed Class Architecture

Userlnterface

- current_user: User

- gdd_caleulator: GDDCalculator

DatabaseM

- weather data_fetcher: WeatherDataFetcher

+ display_pdd trends() : : void

+input_planting details{date: Dare, 1 : Tuple) : ¢ void
+ visualize growth stages() : : void
+ generate_forecast_report() . | Report
+ process weather data(} : @ void
/. +update user dashboard() : ¢ void
aggregation
GDDCalenlator
- base_temp: float
= crop_type: string
aggregati
+ caleulate_duily _gdd(tmax: Noat, tmin: Qoat) : : foat
+ calculate cumulative pdd{daily temps: List) : @ float
+ determine_growth_stage(eumulative gdd: floar) : : String
- validate_temperature_range(imax: float, tmin: float) : : Boclean
dspenﬁemy aggregation
.‘i
‘WeatherDataFetcher
~api_key: string
-base_url: string
- lecation: tuple
+ ferch_current weather() @ ¢ Dictionary

+ fetch_historical _data(start_date: Drate, end_date: Date) : : List
+ validate_temp Jata(data: Dictionary) . . Bool

- parse_weather responseiresponse: Dictionary) © : WeatherRecord

dependency
"4

DatabaseManager

- db_path: string
- connection; SQLite. Connection

+ eonnect() : : void

+ store_weather_recordirecord: WeatherRecord) : : voud
+store_pdd record(gdd recard: GDDRecord) @ @ void
+retrieve_user_records(user id: Integer) : : List

+ update_prowih_stage(user_id: Integer, stage: String) : : void

Figure 3.10: Class diagram
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3.6.3 Entity-Relationship (E-R) Diagram
The E-R diagram in Figure 3.11 represents the relationships between key entities in the
system, particularly how users, weather data, and GDD records interact. The primary

entities in the system are:

» Userlnput — Stores user-provided details, including location, planting date, and
base temperature.

» WeatherRecord — Contains historical temperature data retrieved from Open-
WeatherMap.

* GDDRecord — Computes and tracks daily and cumulative GDD values based on

weather data.

These entities ensure that GDD calculations are accurately performed based on real-
time and historical temperature data while keeping the system simple and efficient.
3.6.4 Normalized Relational Tables

To improve data integrity and minimize redundancy, the database follows third normal

form (3NF). The main tables are shown in Table 3.2.

Table 3.2: Normalized database tables for GDD tracking

Table Name Attributes Keys
UserInput user_id, location, planting_date, | user_id (PK)
base_temperature
WeatherRecords | record_id, user_id, date, tmax, | record_id (PK), user_id (FK)
tmin
GDDRecords gdd_id, user_id, date, daily_gdd, | gdd_id (PK), user_id (FK)
cumulative_gdd
GrowthStage stage_id, stage_name, | stage_id (PK)
min_gdd_threshold,
max_gdd_threshold
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USER_INPUT

string | location PK

date | planting_date

float | base temperature

GDD_RECORD
int | record_id PK

date | record_date

float | daily_gdd

float | cumulative gdd

WEATHER_RECORD

int | weather record id | PK

date | record_date

float | max_temperature

float | min_temperature

Figure 3.11: Entity-Relationship diagram of the GDD monitoring system.
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3.6.5 Physical DB Tables
The database is implemented using SQLite, with the database file named
gdd_data.db. It can be observed in the general project directory showed in

Figure 3.12. The key tables include:

» Userlnput — stores user-provided location, planting date, and base temperature
for GDD calculations.

» WeatherRecords — archives historical temperature data retrieved from Open-
WeatherMap.

* GDDRecords — tracks daily and cumulative GDD values for each planting cycle.

* GrowthStages — defines the thresholds for different growth phases based on ac-

cumulated GDD.

These database structures ensure efficient storage and retrieval of weather data while
supporting accurate GDD tracking and plant growth stage monitoring.

3.7 Implementation

This section describes the tools and technologies used in developing the system and
provides an in-depth discussion of the algorithms implemented throughout the entire
pipeline, from weather forecasting to Growing Degree Days (GDD) calculation.

3.7.1 Development Tools

The system was developed via the use of various programming languages, frameworks
and libraries that enable the system to perform tasks related to machine learning, de-

velopment of web applications and database management. The primary tools used are:

* Python - Used for data preprocessing, model training, and backend API devel-
opment.

» Flask - A lightweight web framework for building the RESTful API.
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Figure 3.12: Project directory structure on visual studio dode, which shows key
components of the system including the database file, gdd_data.db, app.py for the
flask backend logic, and App. js for the frontend implementation.
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* SQLite - A simple yet efficient database management system for tracking GDD
values.
* React.js - A frontend JavaScript framework for building the interactive web in-
terface.
» TensorFlow/Keras - Used for implementing the GRU-based temperature predic-
tion model.
» Facebook Prophet - Employed for trend decomposition and residual analysis.
* OpenWeatherMap API - Provides real-time and historical weather data.
* Plotly.js - A JavaScript graphing library used to visualize daily GDD trends.
* Google Colab - The environment used to preprocess our datasets and train the
model.
3.7.2 Discussion on Algorithms Used
The system combines multiple forecasting techniques, leveraging statistical and deep
learning-based methods, as well as an advanced state estimation technique for dynamic
updating.
3.7.2.1 Time Series Decomposition
Time series decomposition is a powerful analytical tool that separates a time series into

its constituent components:

e Trend: Captures long-term changes in the data, such as gradual increases or
decreases in temperature over decades.

» Seasonality: Reflects periodic patterns, such as annual temperature fluctuations
driven by climatic cycles.

* Residuals: Represents irregular, unpredictable variations not accounted for by

trend or seasonality.
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3.7.2.2 Facebook Prophet for Decomposition

Meta’s Prophet is a forecasting model that is designed specifically for time series
data. We used it to decompose our temperature data into three components; Long-
term trends, seasonal patterns, and residuals. Then, the deep learning model was fed
these components to be able to capture the non-linear patterns which may not be cap-
tured by traditional statistical models. We chose Prophet to analyze our temperature
dataset because of its ability to handle missing data gaps. It models the data using an

additive decomposition approach:
y(t) = g(t) +s(1) +h(t) + &, 3.1

where:

* g(t): Trend component, modeled as a piecewise linear or logistic growth curve.

* s(t): The Seasonality component, which is represented for yearly cycles by
Fourier series in mathematics.

* h(t): Holiday effects, which can be customized for specific time periods.

e &: Residual noise.

Prophet is well suited for handling missing data and outliers. It also allows users to in-
put custom seasonalities as needed. These features make it a good tool for temperature
time series decomposition.

3.7.2.3 Decomposition Process

Prophet was applied to TMAX, the daily maximum temperature data to extract it’s
trend, seasonality, and residual components. Figure 3.13 shows the visualization of
the trend for the entire Laranaca dataset spanning over 40 decades and Figure 3.14
shows the decomposed component of the overall trend and yearly seasonality. This

decomposition served two main purposes:
* Improved Interpretability: By breaking down the data into its components,
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visible views on long-term climatic trends and on recurring seasonal patterns are
enabled, thus adding value to what domain experts can obtain from the data for
decision-making purposes.

* Enhanced Model Accuracy: Modeling trend and seasonality explicitly allows
the provides the GRU network with extra features to work with, improving its

ability to capture short-term nonlinear dynamics.

Prophet Forecast: Trend and Predictions

1971 1981 1991 2001 2011 2021
ds

Figure 3.13: Visualization of time series decomposition performed using Facebook
Prophet. The plot highlights observed data points (black dots), modeled trend,
seasonality, and residual patterns across the historical dataset for olive-producing
regions.

3.7.2.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNSs) are a special kind of neural network built to work
with sequential data. Unlike traditional feedforward networks that process inputs in-
dependently, RNNs incorporate feedback mechanisms that allow them to keep infor-
mation from previous steps. This feedback mechanism makes it great for tasks where
sequence is important, like speech recognition, language modeling, and time series

prediction.
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Prophet Decomposition: Trend and Seasonality
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Figure 3.14: Decomposed components of the time series: (Top) Long-term trend
reflecting gradual changes in TMAX over decades. (Bottom) Yearly seasonality
showing periodic fluctuations typical of the Mediterranean climate.

The defining feature of an RNN is its ability to retain a memory of prior inputs through

a hidden state, which is updated at each time step based on the current input and the

previous hidden state. This hidden state helps RNNs model temporal dependencies,

making them particularly effective for applications such as weather prediction, speech

processing, and time-series analysis. The hidden state /; is computed as follows:

ht = tanh(Wh . ]’l[_] + Wx <X+ bh)

where:

* x;: Input at time step ¢,

* h;_1: Hidden state from previous step,

e W, W,: Weight matrices for both the hidden state and input,
* by: Bias term,

* tanh: Activation function for adding non-linearity.

The output at time step ¢, written as y;, is gotten using:

Ve =Wy by + by
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where W, and b, are the weight matrix and bias for the output layer.

However, RNNs have their limitations; they are challenged by issues such as the van-
ishing gradient problem where gradients vanish in the course of backpropagation and
thus impede the network’s ability to capture temporal dependencies of any length. To
this end, variants of RNNs, including Long Short-Term Memory (LSTM) networks and
Gated Recurrent Units (GRUs) have been proposed to tackle these issues by including
features that aid in the control of information flow.

3.7.2.5 Simple RNN Architecture

A simple RNN processes data sequentially, updating its hidden state and generating
an output at each time step. Figure 3.15 illustrates the flow of information in a basic

RNN.

Previous
State

Output

Input

Figure 3.15: Structure of a simple RNN.

The equations governing this architecture are:
* Hidden state update:
hy = tanh(Wy, - hy—y + Wy - x; + by,)
* Output computation:

e =Wy-h + by

The hidden state /; acts as a bridge between past and present information, helping the
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network recognize patterns over time. However, when dealing with long sequences,
this reliance on A; can cause issues like gradient decay, which makes it harder for the
network to learn effectively.

3.7.2.6 Historical Context and Limitation of RNNs

RNNSs were first introduced by Elman [22] to see how they could be applied to temporal
data. However, early implementations had computational complexity restrictions and

the vanishing gradient problem identified by Hochreiter [18].

Building on earlier work, Pascanu et al. [23] further explored the challenges faced by
recurrent neural networks (RNNs). This led to significant developments, such as Echo
State Networks [24] and the sequence-to-sequence framework introduced by Sutskever
et al. [25]. Because of these advances, new possibilities were opened up for using
RNNs, but they also revealed challenges that needed solving in order to make these
networks truly effective.

3.7.2.7 Long Short-Term Memory (LSTM)

LSTMs were developed to address RNN limitations by introducing memory cells and

gating mechanisms to regulate information flow. The three primary gates are:

* Forget Gate: Controls which parts of the previous state to discard.
 Input Gate: Manages the addition of new information to the memory cell.
* Output Gate: Determines which information from the cell state contributes to

the hidden state.

Figure 3.16 shows the architecture of an LSTM network.

hl —1 7-xl ht
Forget Gate Input Gate Cell State Output Gate

Figure 3.16: Architecture of an LSTM network.

36



The mathematical formulation for LSTM operations includes:

fi =0(Wy-[hi—1,x]+by) (Forget Gate) (3.4)
iy =0(W;-[h_1,x%]+Db;) (Input Gate) (3.5)
C, = tanh(W, - [h;_1,x] +b.) (Candidate State) (3.6)
C; = f,*C,_1+i;%C, (Cell Update) (3.7)
0r=06Wy-[h—1,x%]+b,) (Output Gate) (3.8)
h; = o, *tanh(C;) (Hidden State) (3.9

3.7.2.8 Gated Recurrent Units (GRUs)

GRUs simplify LSTM architecture by combining the forget and input gates into a
single update gate, while maintaining comparable performance with fewer parameters.
GRUs are particularly suitable for applications with computational constraints due to

their efficiency.

GRU operations include:

zz=0(W,-[h—1,x]+b;) (Update Gate) (3.10)
rr=0(W,-[h_1,x%]+b;) (Reset Gate) (3.11)
h; = tanh(W,, - [r; % h;_1,x;] +by) (Candidate State) (3.12)
hy =(1—z)*h_1+2z+h, (Final State) (3.13)

3.7.2.9 GRU Architecture
Introduced by Cho et al. [19], the GRU addresses the vanishing gradient problem

that plagues traditional RNNs while maintaining a simpler structure compared to the

LSTM [18].

As illustrated in Figure 3.17, the GRU employs two primary gating mechanisms:
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1. The update gate (z;) determines how much of the previous hidden state should be
retained. This mechanism is analogous to the forget and input gates in LSTMs
but combines their functionality into a single gate, making the model more com-
putationally efficient [20].

2. The reset gate (r;) controls how much of the previous hidden state should influ-
ence the candidate hidden state. When closed (values near zero), it allows the

unit to forget past information and effectively ‘reset” its state.

—){ Update Gate (z;)

Candidate I:[idden
State (i)

Reset Gate (r;)

Figure 3.17: Architecture of a Gated Recurrent Unit (GRU).

The candidate hidden state (%) proposes a new hidden state value, which is then
weighted by the update gate to produce the final hidden state (/). This architecture has
shown comparable performance to LSTMs on various sequence modeling tasks while
being more parameter-efficient [20].

3.7.2.10 Bayesian Ensemble Kalman Filter (BEKF) for Dynamic Updating

The Bayesian Ensemble Kalman Filter (BEKF) is a powerful way to refine predictions
by combining ideas from Bayesian inference and the Ensemble Kalman Filter (EnKF).
The EnKF is commonly used for large-scale problems, especially in geophysical mod-
els, because it tracks changes over time using a set of simulations. This allows it to

estimate errors and continuously update predictions as new data comes in.

By adding Bayesian methods to the EnKF, the model becomes better at handling uncer-
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tainty and working with complex, non-Gaussian data. One example of this application
is a study in Mathematical Geosciences, where a Bayesian approach that uses Gaussian
mixture models was proposed [26]. This improves upon the traditional EnKF, which
assumes that data follows a normal distribution. By allowing more flexibility, it be-
comes especially useful for problems like subsurface modeling, where data can have
multiple different distributions. Its implementation is shown in Figure 3.18, where
an ensemble of GRU models is updated dynamically using real-time temperature data

from OpenWeatherMap.

The process starts with a set of GRU model states which are initialized to represent dif-
ferent plausible system conditions. Each state is propagated forward based on learned
GRU dynamics to produce independent forecasts. When new temperature data from
OpenWeatherMap becomes available, the ensemble members are updated via Kalman
filtering, so that their predictions are consistent with observed values. The final output
is obtained by computing the ensemble mean, thus performing a dynamically refined
forecast. The update step is based on the Kalman gain equation:

x =x; +K(yi—Hx; ) (3.14)
where x; is the prior state estimate, K; is the Kalman gain, y; represents the observed
temperature data, and H is the observation model. This approach allows the model to
remain responsive to sudden weather changes while maintaining long-term predictive
stability.
3.7.2.11 RESTful API for Data Processing
The system uses a RESTful API architecture to connect the frontend and backend

components. Through dedicated endpoints, users can access both real-time and histor-

ical temperature measurements, perform growing degree day calculations, and update
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class BayesianEnsembleKalmanFilter:

def __init_ (self, ensemble_size, model_class, input_shape, initial params, process_noise, observation_noise):
self.ensemble_size = ensemble_size
self.models = [model_class{input_shape! for _ in rangelensemble_size)]|

for model in self.models:
model.set_weightsiinitial_params)

self.process_noise = process_noise

self.observation_noise = observation_noise

def

update(self, X_seq, observed_value):
#lpdates the ensemble models wsing OpenWeatherMap real-time data
ensemble_predictiens = np.arrayl [model.predict{X_seq) for model in self.models]}

# Kalman update: Adjusts based on OpenWeatherMap's observed TMAX
kalman_gain = self.process_noise / (self.process_nolse + self.observation_noise}
updated_predictions = ensemble_predictions + kalman_gain % {observed_value - ensemble_predictions)

return updated_predictions

Figure 3.18: Implementation of the Bayesian Ensemble Kalman Filter (BEKF) for
dynamic updating

cumulative values in the database. This modular design makes it easy to add more
functionalities to the system for future updates.

3.7.2.12 Visualization with React and Plotly.js

Plotly.js was used to create interactive charts that help visualize GDD trends clearly.
Farmers can enter their planting date and view daily GDD accumulation trends along
with an explanation of their current growth stage.

3.7.3 Preprocessing Steps

To prepare the data for training, the following preprocessing steps were implemented:

» Handling Missing Values: Forward and backward filling addressed minor gaps,
while mean imputation helped with addressing longer gaps.

e Outlier Treatment: Outliers identified using the interquartile range (IQR)
method were replaced with interpolated values.

* Feature Standardization: Variables such as TMAX and Growing Degree Days
(GDD) were normalized to zero mean and unit variance for consistent input.

* Growing Degree Days (GDD): Calculated to capture heat accumulation which
is important across olive various cultivation stages.

* Decomposition: Facebook Prophet was used to separate the data into trend,

seasonal, and residual components.
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3.7.4 Growing Degree Days (GDD)
GDD is a measure of the accumulation of heat over time and is used as a critical
metric for temperature sensitive crops such as olives. It is based on the assumption
that plant growth is directly proportional to the accumulation of heat above some base
temperature. For olives, the base temperature typically ranges between 7°C and 12°C,
depending on the particular variety and growth stage.

GDD = max(0,TMAX — Base Temperature), (3.15)
where:

* TMAX: Daily maximum temperature.

* Base Temperature: Threshold temperature below which growth halts, typically

10°C for olives.

Cumulative GDD over a season is calculated as:
Cumulative GDD = Z(TMAX — Base Temperature), (3.16)

excluding negative values to ensure accuracy.

3.7.4.1 Relevance of GDD in Olive Cultivation

Growing degree days (GDD) are a vital metric for tracking and predicting olive tree
development during the season. The lifecycle of an olive is shown to have six stages
in Figure 3.19, each stage having certain GDD accumulations. The developmental
stages can be quite different when observed in different olive varieties and are planted
at different times owing to genetic diversity. For instance, in Figure 3.20, it is pos-
sible to see that several cultivars are in different phenological stages, although they
were observed at the same time. This variation is attributed to two factors: genetic
variations that affect the heat requirement thresholds and the developmental timing,

and staggered planting dates that lead to different GDD accumulation periods. The
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way different crop varieties develop at their own pace highlights how crucial it is to

have reliable temperature readings and growing degree day calculations for informed

decision making. The GDD accumulation stages for olive trees are:

3.7.5

Bud Development (0-100 GDD): Initial stage where vegetative and flower buds
form, marking the tree’s exit from winter dormancy.

Flowering (100-350 GDD): Critical period for bloom development and pollina-
tion, directly impacting potential yield.

Fruit Set (350-700 GDD): Early fruit development phase where successful pol-
lination leads to initial olive formation.

Pit Hardening (700-1200 GDD): Characterized by stone formation and hard-
ening, a key developmental milestone.

Oil Accumulation (1200-1800 GDD): Essential phase for oil synthesis and ac-
cumulation, significantly affecting final oil content and quality.

Maturation (1800-2200 GDD): Final ripening stage marked by color changes
and optimal oil concentration.

Dataset Partitioning

The processed temperature data were divided as follows:

3.7.6

Training Set: 60% was used for model training.
Validation Set: 20% was used for cross-validation.
Testing Set: The remaining 20% was used to evaluate the model’s performance.

Flow of Information in the Hybrid Model

This general workflow is highlighted in Figure 3.21. Through Facebook Prophet, the

input data undergoes preprocessing and decomposition.They are then passed to the

GRU network along with residuals and other engineered features. This multi-stage

process is effective in modeling both linear and nonlinear dependencies, and it comes

up with very accurate temperature forecasts.
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Olive Development Stages & Growing Degree Days
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Bud Development
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Figure 3.19: Olive tree development stages with corresponding GDD requirements.
The timeline visualization shows the progressive heat accumulation needs throughout
the growing season, from initial bud development to final maturation.

A,

es in different phenological stages for the same

date. Adapted from Cultifort (2025) [1].
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Data Collection
(Olive-producing regions)
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Data Preprocessing
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Figure 3.21: Flowchart of the training and evaluation process.
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3.7.7 Hybrid Model Development

This paper presents a hybrid model that combines the advantages of Facebook Prophet
and GRU. The pipeline is for both linear and nonlinear components in temperature
forecasting and combines the unique capabilities of each model. It’s two main compo-

nents are:

1. Facebook Prophet: Handles the decomposition of the time series into trend,
seasonality, and residual components, effectively modeling long-term and sea-
sonal variations.

2. GRU Network: Processes the residuals from Prophet to capture nonlinear de-
pendencies and short-term variations that are difficult for purely statistical meth-

ods to address.

The following steps summarize the hybrid model pipeline:

* Data Preprocessing: Includes handling missing values, scaling features, and
calculating Growing Degree Days (GDD).

* Decomposition: Facebook Prophet decomposes the time series into its trend,
seasonality, and residual components.

* GRU Input: Residuals from Prophet, along with additional features such as
GDD, are fed into the GRU network for final predictions.

* Evaluation: The hybrid model’s performance is compared with baseline mod-
els, including SARIMA, stand-alone GRU, and LSTM.

3.7.8 Advantages of the Hybrid Approach

The proposed hybrid model offers several advantages:

* Scalability: The GRU network is computationally efficient, enabling large-scale
applications.

* Interpretability: Facebook Prophet’s decomposition provides interpretable out-
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puts for trend and seasonality, which are valuable for domain experts.
Robustness: By combining statistical and deep learning methods, the hybrid

model effectively handles both linear and nonlinear dynamics in the data.

3.8 Training and Evaluation

To ensure convergence and optimal performance, a carefully tuned set of hyperparam-

eters was used to train the GRU model. The following settings were used during the

training process:

Learning Rate: 0.001 to balance convergence speed and ability to escape local
minima.

Batch Size: 32 which enables efficient gradient updates and computational effi-
ciency.

Sequence Length: 30 time steps to capture temporal dependencies within a one
month window.

Epochs: 100 to allow the model to learn complex patterns without over fitting.
Optimizer: Adam optimizer was chosen because of its adaptive learning rate
and momentum which enables faster convergence.

Loss Function: The primary loss function used was Mean Squared Error (MSE)

because it penalizes large prediction errors more heavily.

The model was implemented in Python with TensorFlow/Keras and trained on GPU

environment for accelerated computations. Early stopping was employed to monitor

the validation loss and prevent over fitting with patience of 10 epochs.

3.8.1

Evaluation Metrics

Four choosen metrics were utilized to comprehensively assess the performance of the

model:

Mean Squared Error (MSE): This measures the average squared error between
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predictions and actual values. Lower MSE indicates better performance.
* Mean Absolute Error (MAE): Indicates the average magnitude of prediction
errors, providing an interpretable measure of error magnitude.
* R-Squared (R?): This score reflects the proportion of variance which is ex-
plained by the model, with values closer to 1 indicating better performance.
* Mean Absolute Percentage Error (MAPE): Expresses prediction errors as per-
centages, providing a normalized measure of accuracy.
3.8.2 Evaluation Process
The hybrid model is evaluated on a testing dataset (20% of the total data), and its

performance was compared to baseline models, including:

» Seasonal Autoregressive Integrated Moving Average (SARIMA)
* Long Short-Term Memory (LSTM)
 Standalone GRU

e Simple Moving Average (SMA)

The study raised some key points, including how the hybrid model identified both the
overall trends and sudden random fluctuations in the data. Although the gains are
modest compared to the baselines, the model’s strength in all the metrics considered
makes it a good recommendation for use as a reference model.

3.9 Dynamic Forecasting

Dynamic forecasting is implemented to adapt the hybrid model for real-time predic-
tions by integrating current weather data. This capability enables continuous tempera-
ture forecasting for olive-producing regions.

3.9.1 Real-Time Data Retrieval

Weather data is retrieved using the OpenWeatherMap One Call API 3.0 [27]. The

API provided daily maximum temperatures (Tiax) for Larnaca, Cyprus (34.9177°N,

47



33.6250°E). The retrieval process included:

1. API Integration: Python requests to the OpenWeatherMap API endpoint with
specified geographic coordinates
2. Data Processing: Direct retrieval of temperature data in Celsius units
3. Error Handling: Robust error management for API responses and data valida-
tion
3.9.2 Feature Updates

The retrieved Tiy,x values underwent preprocessing aligned with the training pipeline:

* MinMax scaling for temperature data and standardization for derived features
* Generation of Growing Degree Days (GDD) values using base temperature of
10°C
3.9.3 Model Performance
The hybrid GRU model was evaluated on a 14-day forecast period (January 1-14,

2025), producing the following metrics:

e Mean Squared Error (MSE): 3.0511
e Mean Absolute Error (MAE): 1.4099

e R2 Score: -0.6056

The 14-day forecast length was choosen for agricultural relevance, model stability,
and computational cost. It enables the farmers to schedule immediate tasks such as
watering and feeding while ensuring that the model is accurate enough without over-
emphasizing the uncertainty. Furthermore, GRUs and other recurrent neural networks
are more accurate at short-to-medium range forecasts, which means two weeks is a
good cut-off before the errors start to grow. Costs were also another factor as fore-
casting and retrieving historical weather data from the OpenWeatherMap API incurs

charges and a 14-day window is decent accuracy—cost compromise. Lastly, Finally,
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this period is consistent with conventional meteorological forecasting periods which

makes it suitable to apply in agriculture.

The model showed varying prediction accuracy, with daily temperature differences

ranging from -4.28°C to +2.37°C. Some key observations include:

* Greatest deviation: January 13, 2025 (predicted: 11.76°C, actual: 16.04°C)
* Most accurate prediction: January 8, 2025 (predicted: 12.35°C, actual: 12.56°C)
» Average absolute deviation: 1.41°C across the forecast period
3.9.4 Comparative Analysis
Table 3.3 presents the predicted and observed maximum daily temperatures (Tmax)
for the given period, along with the absolute differences. Figure 3.22 illustrates a
plot of the comparison. This comparison helps evaluate how well the model captures

temperature variations and whether any systematic biases exist.

Table 3.3: Comparison of predicted and observed temperatures for the 14-day forecast

period.

Date Predicted Tihax (°C) | Observed Tiyax (°C) | Difference (°C)
2025-01-01 13.25 11.20 +2.05
2025-01-02 11.55 13.90 -2.35
2025-01-03 13.32 14.29 -0.97
2025-01-04 13.84 13.04 +0.80
2025-01-05 13.10 14.15 -1.05
2025-01-06 13.86 12.42 +1.44
2025-01-07 12.67 11.80 +0.87
2025-01-08 12.35 12.56 -0.21
2025-01-09 12.84 12.10 +0.74
2025-01-10 12.52 13.96 -1.44
2025-01-11 13.64 13.92 -0.28
2025-01-12 13.69 11.32 +2.37
2025-01-13 11.76 16.04 -4.28
2025-01-14 14.11 14.98 -0.87
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14-Day Temperature Comparison: Historical vs Model Predictions
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Figure 3.22: 14-Day temperature comparison: Forecast data from
OpenWeatherMMap vs hybrid model predictions

3.9.5 Dynamic Feedback Mechanism

To maintain forecast accuracy and adaptability in response to changing weather con-

ditions, a dynamic feedback mechanism is implemented using the Bayesian Ensemble

Kalman Filter (BEKF). BEKF enables continuous correction of predictions by inte-

grating real-time weather observations, ensuring that systematic biases are identified

and corrected efficiently.

The key features of the dynamic feedback mechanism include:

Bayesian Ensemble Kalman Filtering: The filter enhances the forecasts by learn-
ing from new temperature readings at frequent intervals, resulting in more accu-
rate and precise predictions.

Sliding Error Window: The system tracks prediction accuracy by using a sliding
window of recent errors to reveal time-based performance trends.

Bias Estimation: 1t identifies persistent prediction biases through exponential
averaging to determine whether forecasts are trending high or low.

Adaptive Adjustments: The bias estimates are used to enhance the prediction
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pipeline which results in better forecasts compared to actual observations.
* Continuous Learning: With each new data point, the system updates its bias

estimates to adapt to changing climate patterns through continuous learning.

The feedback loop operates with a learning rate of 0.1 and a choosen window size of

five days, providing a balance between responsiveness and stability.

Table 3.4 compares the model’s original predictions with those refined using the
BEKF-based feedback mechanism. The Dynamic_TMAX column demonstrates
significant accuracy improvements, as reflected in a reduced Mean Absolute Error

(MAE) of 1.0485 compared to 1.4099 in the original predictions.

Table 3.4: Comparison of predicted and adjusted TMAX values using BEKF

Date TMAX (°C) Predicted_TMAX Dynamic_TMAX
(°O) (°O)
2025-01-01 | 11.20 13.2517 12.6362
2025-01-02 | 13.90 11.5480 11.8227
2025-01-03 | 14.29 13.3165 13.8009
2025-01-04 | 13.04 13.8418 13.9403
2025-01-05 | 14.15 13.1009 13.4846
2025-01-06 | 12.42 13.8642 13.6995
2025-01-07 | 11.80 12.6725 12.2955
2025-01-08 | 12.56 12.3478 12.1476
2025-01-09 | 12.10 12.8419 12.4791
2025-01-10 | 13.96 12.5223 12.6997
2025-01-11 | 13.92 13.6392 13.8476
2025-01-12 | 11.32 13.6924 13.1266
2025-01-13 | 16.04 11.7609 12.6486
2025-01-14 | 14.98 14.1108 14.9929

This dynamic feedback system, powered by BEKF, improves the reliability of forecasts

because it revises predictions in real-time. The model provides continuous alignment
of forecasts with weather conditions by using ongoing observations, which makes it a
valuable tool for precision-driven temperature forecasting.
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3.10 Data Storage

The forecasting model was developed in Google Colab, where temperature data was
stored in CSV (Comma-Separated Values) format for analysis. This format’s straight-
forward structure made data processing efficient while ensuring compatibility with
analytical tools, which streamlined the model development and temperature pattern
analysis.

3.10.1 Geographic Scope

The data was gathered from five major olive-producing regions, representing various

Mediterranean climates. These regions, detailed in Table 3.1, include:

* Almeria, Spain

* Grosseto, Italy

* Bursa, Turkey

e Kalamata, Greece

* Larnaca, Cyprus

More details on the characteristics and coverage of these regional datasets are ex-
plained in Section 3.4.

3.10.2 Workflow Datasets for Hybrid Model Training

To support the research objectives, the collected regional data was processed and orga-

nized into the following five datasets, each serving a distinct purpose:

* Historical Temperature Data: The temperature records of all the five regions
are included in this for the period of 1968-2025.

 Training Dataset: A cleaned and prepared portion of the historical data, used
to train the hybrid model.

» Testing Dataset: A separate part of the historical data, set aside to test how well

the model works.
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* Prediction Results: The model’s outputs, with predicted temperatures and how
accurate the predictions are.

* OpenWeather API Data: The current temperature from the OpenWeather API
is used to The update response the is model concise and and check proportional
its to correctness.

3.10.3 Data Processing Workflow
The data processing pipeline comprises three main stages to prepare datasets for anal-

ysis and modeling:

1. Raw Data Collection
* Historical temperature records obtained for each region (detailed in Ta-
ble 3.1)
* Real-time temperature data retrieved from OpenWeather API
2. Preprocessing Stage

* Temporal standardization across all datasets

Computation of agricultural metrics (GDD) using established models

Missing data interpolation using bidirectional methods

Feature scaling for model compatibility
3. Data Storage
* Processed datasets stored in structured CSV files:
— historical_data.csv
— training_data.csv
— testing_data.csv
3.11 System Validation and Quality Assurance
In order to verify the core functionality of the system, targeted testing was performed

in three areas: feature operation, API response, and user interface behavior.
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3.11.1 Quality Expectations

The system was expected to meet the following quality criteria:

* Accuracy: GDD values should match manual calculations within an acceptable
margin of error.

* Reliability: The system should function correctly under typical use cases, ensur-
ing API calls do not fail unexpectedly.

* Good User Experience: The interface is designed to be intuitive and easy to nav-
igate, allowing users to input their location, base temperature, and planting date
with minimal effort. The layout ensures that essential information is clearly dis-
played, making it accessible for farmers and researchers. Figure 3.23 shows a
screenshot of the application with a sample user input, demonstrating the sim-
plicity of the interface.

* Fast Performance: The application is expected to respond to user requests within
3 seconds. API calls for retrieving weather data and calculating GDD should ex-
ecute within approximately three seconds to provide a smooth user experience.
Figure 3.24 presents an example of the system’s response, displaying the calcu-
lated GDD trends and growth stage after processing user input.

* Maintainability: The application’s modular design facilitates long-term mainte-
nance and updates. Agricultural researchers can easily add new data sets, adjust
GDD criteria, or introduce additional features without redoing the entire system.

This flexible architecture ensures the platform stays relevant and adaptable.

Together, these design choices create a reliable and user-friendly GDD application that

farmers and researchers can use long-term.
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Figure 3.23: User interface for entering location, base temperature, and planting date.
The design ensures ease of use for farmers and researchers.
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Figure 3.24: System’s response after processing user input, displaying total GDD,
growth stage, and a graphical trend of daily GDD accumulation.
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3.11.2 Test Cases Applied
Several test cases, focusing on user inputs, API responses, and UI updates, were ap-

plied to verify the correctness and reliability of the GDD web application.

One key test involved validating the API response and data flow, ensuring that user
inputs such as location, base temperature, and planting date were correctly processed,
and that the system correctly computed the daily and cumulative GDD values. Figure
3.25 shows a captured API response in the browser’s developer console, verifying that

the correct weather data, temperature values, and computed GDD were returned.

Other test cases included:

* Input Validation Tests: By testing for all kinds of inputs, it is ensured that invalid
dates, missing fields, or non-numeric values were handled with appropriate error
messages.

* GDD Calculation Accuracy: GDD was cross-checked with manual calculations
to confirm correctness.

 User Interface Tests: Loading the user interface verified that the displayed GDD
values, growth stage, and trend chart correctly reflected API responses.

3.12 User Guide

This section provides an overview of how to use the web application for tracking Grow-
ing Degree Days (GDD) and monitoring olive tree growth stages. Since this is a pro-
totype, the application is currently running locally on a personal machine and has not
been deployed to a web server. Users must ensure that both the backend and frontend

are running on their local system for proper functionality.
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Figure 3.25: Inspect tab disp1£§ing API respod p I- lus. The
system successfully returns GDD calculations based on user inputs.

3.12.1 Local Development Setup
The current implementation runs as a development prototype on the local machine.

The system requires two components to be started through command-line interface:

1. Backend Service: Launch the Python server by entering the following com-
mand: python app.py
2. Frontend Application: In a separate terminal window, start the React interface

with: npm start

After entering these commands and waiting for both services to initialize, open any
web browser and navigate to http://localhost:3000. The interface is intentionally min-
imalist, requiring only essential inputs to generate GDD forecasts. This streamlined
approach makes the application straightforward to use while ensuring all necessary
functionality remains accessible. Future production deployment would eliminate these
manual startup steps, allowing users to access the application directly through a web

browser.
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3.12.2 Entering Required Information

On the main page, the user is required to input three key parameters: the location
of the olive grove, the base temperature, and the planting date. The location should
be entered as a city or region name, which will be used to fetch weather data. The
base temperature, which defaults to 10°C but can be adjusted, represents the minimum
threshold for plant growth calculations. The planting date must be selected using the

provided calendar input to indicate when the olive trees were planted.

Once all fields are completed, clicking the "Get GDD Forecast" button will trigger the
system to retrieve weather data, compute GDD values, and display the results.

3.12.3 Understanding the Results

After processing, the system displays key information including the total accumulated
GDD, the current plant growth stage, and a message summarizing what the GDD value
means for the olive tree’s development. A graph is also generated, showing how the
GDD has evolved over time based on historical temperature records. This visualization
helps users track trends and make informed decisions regarding irrigation, fertilization,
and harvesting.

3.12.4 Interpreting the GDD Chart

The trend chart at the bottom of the page provides an overview of daily GDD accu-
mulation. The trend chart at the bottom of the page provides an overview of daily
GDD accumulation. When the line climbs steadily upward, it’s a good sign that grow-
ing conditions are helping plants develop normally. If the line flattens out or drops, it
might mean temperature changes are slowing down plant growth. Farmers can look
at these patterns to better predict when their crops will hit different growth stages and

adapt their field management timing accordingly.
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3.12.5 Troubleshooting Common Issues

As this system relies on real-time and historical weather data from OpenWeatherMap,
users may encounter occasional errors. An "Invalid Location" error message indicates
that the provided location coordinates or name cannot be validated by the weather API.
Similarly, the appearance of an "Invalid Date Format" message suggests improper date
selection - users should utilize the provided date picker interface to ensure correct date
formatting.

3.12.6 Future Enhancements

Since this is a prototype, it is currently being run locally rather than being deployed
online. Future improvements could include deployment to a cloud-based platform,
integration of additional climate variables like humidity and precipitation, and support
for multiple crop types with different base temperatures. These enhancements would

make the system more accessible and practical for a wider range of users.
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The hybrid model was evaluated using the five source datasets from Table 3.1, which
details various olive-producing regions, and its performance was compared with the
baseline models. The four evaluation metrics used are MSE, MAE, R2, and MAPE.
It demonstrated great performance across the key evaluation metrics when compared
to the standalone GRU, LSTM, and SARIMA models. The results are summarized in

Tables 4.1, 4.2, 4.3, 4.4, and 4.5. Figure 4.1 illustrates a plot comparing the actual

Chapter 4

RESULTS AND DISCUSSION

values from the test dataset with the predictions made by the model.

Table 4.1: Performance metrics of the hybrid model and baseline models on Larnaca,

Cyprus Dataset

Model MSE MAE R? | MAPE (%)
SMA 0.066038 | 0.225621 | -2.103 1.50
SARIMA 0.081891 | 0.237031 | -3.308 12.45
LSTM 0.002402 | 0.035990 | 0.832 9.23
Standalone GRU | 0.002353 | 0.033673 | 0.831 9.01
Hybrid GRU 0.001982 | 0.031371 | 0.838 7.03

Table 4.2: Performance metrics of the hybrid model and baseline models on the

Almeria, Spain dataset

Model MSE MAE R? | MAPE (%)
SMA 0.088668 | 0.260306 | -2.103 62.24
SARIMA 0.123492 | 0.311048 | -3.321 87.94
LSTM 0.005387 | 0.058316 | 0.810 13.37
Standalone GRU | 0.004814 | 0.052867 | 0.830 11.93
Hybrid GRU 0.004608 | 0.051443 | 0.839 11.52
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Table 4.3: Comparison of performance metrics for the hybrid model and baseline mod-

els on the Grosseto, Italy dataset

Model MSE MAE R? | MAPE (%)
SMA 0.072242 | 0.236372 | 47.449 -1.171
SARIMA 0.066341 | 0.204456 | 33.365 -0.993
LSTM 0.002533 | 0.037274 | 7.955 0.924
GRU 0.002389 | 0.035350 | 7.667 0.928
Hybrid GRU | 0.022264 | 0.034887 | 7.633 0.839

Table 4.4: Comparison of performance metrics for the hybrid model and baseline mod-

els on the Bursa, Turkey dataset

Model MSE MAE R? MAPE (%)
SMA 0.085379 | 0.250471 | 60.737 | -180.871
SARIMA 0.030113 | 0.145676 | 37.570 0.939
LSTM 0.003780 | 0.043499 | 10.970 8.750
Standalone GRU | 0.003571 | 0.041432 | 10.036 8.219
Hybrid GRU 0.004063 | 0.046906 | 11.332 8.389

Table 4.5: Comparison of performance metrics for the hybrid model and baseline mod-

els on the Kalamata, Greece dataset

Model MSE MAE R? MAPE (%)
SMA 0.027810 | 0.124308 | 29.598 0.188
SARIMA 0.129726 | 0.306059 | 59.814 -2.789
LSTM 0.218904 | 0.330353 | 115.966 -5.442
Standalone GRU | 0.014809 | 0.097926 | 28.021 0.564
Hybrid GRU 0.006914 | 0.066302 | 21.513 0.839
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4.1 Performance of the Hybrid Model

The performance of the hybrid model on the Larnaca dataset was the highest among the
models compared, with an R-squared (R?) of 0.838. This score means that the hybrid
model is able to explain 83.8% of the variance in the target weather variable. This
suggests that the combination of the trend and seasonality modeling from Facebook
Prophet, along with the nonlinear pattern recognition capabilities of the GRU network,
has enabled the hybrid model to capture the underlying complexities of the weather
data to a significantly greater extent than the other approaches. The R? values from the

hybrid models is also the highest ammong all models for the other four datasets.

A high R? value is desirable in weather forecasting, because it demonstrates the
model’s ability to reliably account for the various factors that influence weather

patterns

In addition to the R? metric, the hybrid model also outperformed the other approaches
in terms of Mean Squared Error (MSE) and Mean Absolute Error (MAE). The hybrid
model stood out with its performance on the Larnaca dataset, achieving an MSE of
0.00198 and an MAE of 0.03137—significantly better than the baseline models. It
showed similarly strong results on the Kalamata and Almeria datasets, consistently

delivering the lowest MSE and MAE values compared to the other models.

The hybrid model’s MAPE score suggests that its forecasts, on average, deviate from
the true weather conditions by only around 7% on the Larnaca dataset, a remarkable
level of precision that outperforms the other models considered. This low MAPE can
be particularly valuable in weather-sensitive applications, where accurate percentage-

based predictions are crucial for decision-making and planning.
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Hybrid GRU Model - Actual vs Predicted
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Figure 4.1: Comparison of actual and predicted temperature values

In summary, by leveraging the strengths of Facebook Prophet and GRU approaches, the
hybrid model’s performance accross the R%, MSE, MAE, and MAPE metrics demon-
strate that it could be useful in many agricultural as well as many other real-world
applications.

4.2 Comparison with Baseline Models

Table 4.5 and Figure 4.2 summarize the performance metrics for various forecasting
models on the Kalamata dataset. The hybrid GRU model demonstrated superior Mean
Absolute Error (MAE) values, confirming its advantage over traditional and standalone

machine learning approaches.

The SARIMA model captured linear trends reasonably well but struggled with the
nonlinear dependencies inherent in weather data. While the LSTM and standalone
GRU models performed better with nonlinear patterns, they lacked the decomposition

capability provided by Facebook Prophet in the hybrid model.

The hybrid GRU model achieved an MAE of 0.066302, significantly outperforming

the LSTM model (MAE: 0.330353) and standalone GRU (MAE: 0.097926). The in-
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Figure 4.2: MAE comparison of weather forecasting models for Kalamata, Greece

tegration of Facebook Prophet’s decomposition and GRU’s pattern recognition led to
the most accurate and reliable forecasts for the Kalamata region.

4.3 Key Contributions

The hybrid model improves agricultural weather forecasting in several ways. While
the GRU network finds intricate underlying patterns, Facebook Prophet breaks de-
composes temperature data into distinct trends and seasonal patterns, while the GRU
network identifies complex underlying patterns. This combined approach surpasses
traditional forecasting methods across various Mediterranean climates. By integrating
GDD calculations, the model provides practical value for olive growers monitoring
critical growth stages. The web interface makes these advanced forecasting capabili-
ties accessible to farmers, linking research innovations with agricultural practice.

4.4 Current Limitations

The model’s limitations warrant consideration. Its focus on temperature alone leaves

out other important environmental factors like rainfall and humidity that influence
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farming decisions. The short-term nature of its forecasts may not adequately sup-
port long-term agricultural planning. While the GDD tracking system provides value,
it currently assumes all olive varieties respond similarly to heat accumulation, and
does not yet account for the slight variations between cultivars. Since extreme weather
occurrences are under-represented in the training data, more research is necessary to
determine the model’s dependability in these circumstances. These limitations, while

not diminishing the model’s utility, point to clear paths for future development.
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Chapter 5

CONCLUSION AND FUTURE WORK

This thesis presents a hybrid weather forecasting model that integrates Facebook
Prophet for trend and seasonality decomposition with GRUs for modeling residual
patterns. The model was rigorously tested across Mediterranean olive-growing regions
in Cyprus, Spain, Italy, Greece, and Turkey, demonstrating strong accuracy and
reliability. In addition to temperature forecasting, the system incorporates a Growing
Degree Days (GDD) model, enabling farmers to track olive tree growth stages
throughout the season. To make this information more accessible, a web application
was developed, allowing users to input their planting date and visualize accumulated

heat units over time, aiding in agricultural planning.

The main contributions of this research include the development of a lightweight hy-
brid forecasting framework foragriculture applications. The feasibility of combining
statistical decomposition with deep learning for improved predictive performance in
regions with climate variation is also demonstrated in the study. Furthermore, the in-
corporation of real-time weather updates using the Bayesian Ensemble Kalman Filter
(BEKF) improves the adaptability of the forecasts, such that they can be continually
updated to reflect new information from observations. The integration of a web-based
visualization tool also ensures that the model’s insights are practically accessible to
end-users, closing the gap between advanced forecasting techniques and real-world

decision-making in agriculture.
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Future work could expand the model’s capabilities by refining predictions by incorpo-
rating additional environmental factors such as precipitation, humidity, and soil mois-
ture. Enhancing the deep learning architecture with attention mechanisms or trans-
former models may also improve long-term forecasting accuracy. Additionally, inte-
grating satellite data or IoT-enabled farm sensors could provide more localized and
real-time insights. While this study lays a strong foundation for agricultural weather
forecasting, continued development could make it an even more valuable tool for pre-

cision farming and climate resilience.
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